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SYNOPSIS 

A new analysis is presented of the relations between the multicomponent diffusion coef- 
ficients and the classical Kedem-Katchalsky coefficients which describe solute transport 
in membranes. This analysis is applied to binary and ternary systems and shows the im- 
portance of system nonideality in the calculation of solute diffusion coefficients. I t  is shown 
that the solute permeability coefficients can be calculated from independent knowledge of 
the nonideal thermodynamic activity coefficients and the multicomponent diffusion coef- 
ficients of the system. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Linear phenomenological laws combined with expres- 
sions from nonequilibrium thermodynamics provide 
accurate characterization of multicomponent transport 
in membranes.' It is thus possible to characterize a 
membrane for a particular separation without per- 
forming experiments on a wide variety of membranes. 

In the following study, two methods were exam- 
ined that are useful in the study of solute transport 
through membranes. First, the multicomponent 
Stefan-Maxwell equations2 are compared to the 
Kedem-Katchalsky3 equations and new correlations 
between their parameters are derived. The impor- 
tance of the friction coefficients in determining the 
response of the membrane suggests that a deeper 
look at the causes of the friction is necessary. New 
friction coefficient formalisms are analyzed. These 
analyses are applicable to dilute solute polymer sys- 
tems, although the behavior of concentrated solu- 
tions cannot be satisfactorily explained. 

EQUIVALENCE OF MULTICOMPONENT 
SOLUTE-TRANSPORT RELATIONS 

Consider the multicomponent solute transport in a 
membrane. From the fundamental entropy dissi- 

pation formalism for small departures from equilib- 
rium, the use of equilibrium relations for thermo- 
dynamic quantities permits the recognition of all 
possible ways of entropy dissipation as the products 
of conjugate driving forces and resulting fluxes. 
Furthermore, for small gradients of these forces, 
linearity in the relation of forces to fluxes is assumed, 
with the material transport properties appearing as 
the symmetric coefficients in this force-flux relation. 
The symmetry of these coefficients is the major de- 
velopment of Onsager and allows the specification 
of the force on a particular component in a system 
such as multicomponent transport. 

Neglecting temperature gradients since the sys- 
tems of concern are largely isothermal, a set of 
equations, known as the Stefan-Maxwell equations, 
can be obtained.' These are eqs. ( 1) and (2a-c) : 

j 2 k  

* To whom correspondence should be addressed. 
Journal of Applied Polymer Science, Val. 60, 95-101 (1996) 
0 1996 John Wiley & Sons, Inc. CCC 0021-8995/96/010095-07 



96 SUNDARAM AND PEPPAS 

Here, vk is a reference velocity arbitrarily chosen 
as the velocity of the membrane species; Di,, the 
symmetric multicomponent diffusion coefficient, 
and di,  the force on the species i which has a 
molefraction x i .  

BINARY SYSTEMS 

The first case of application of eqs. ( 1 ) and ( 2 )  is 
for the system consisting of three components, i.e., 
a single solute, water, and the membrane. Since vk 
= v, and the membrane is fixed at  zero, eq. (1) is 
written as 

Here, N, is the flux of component j and is cx,vj. The 
terms xi in eq. ( 1) are canceled from both sides after 
expanding di into the driving forces of chemical po- 
tential and pressure. The driving force due to an 
electrostatic potential can be included on the left- 
hand side of eq. ( 3 ) .  In eq. ( 3  ), ai is the activity of 
component i; Vi , the specific volume of component 
i ;  and p ,  the pressure. Before performing an inte- 
gration of eq. (3) over the thickness of the membrane 
6, the quantities ai and p have to be averaged out or 
their dependencies on membrane position have to 
be specified. For pressure, i t  is assumed that the 
gradient across a thin membrane is given by the 
difference of pressure of the two bounding solutions. 

For the solute activity, the activity coefficient is 
employed: 

d d In ys dcs 
RT-((Ina,)=: I+------- - 

d n  R T [  C S  d I n c s ]  d n  (4) 

Here, Cs is an average concentration of solute which 
is defined by Kedem and Katchalsky3 as the mean 
logarithmic concentration based on the concentra- 
tions of the bounding solutions, i.e.: 

In our new analysis, by defining 

and using the Gibbs-Duhem relation, we obtain 

C S  

CW 
R T d  In aw = -RT: d In as 

Equation (3)  can now be integrated. For a binary 
system with stationary membrane species, the ma- 
trix expression is conveniently written as 

]“3 

where ri, are the binary resistance (friction) coeffi- 
cients expressed by eq. (9) : 

R T d x  
GJ = J’, CD, 

By rearrangement, one obtains 

Here, matrix [ R ]  is the resistance (friction) coefi- 
cient matrix which represents the interaction be- 
tween the solutes and water in the presence of the 
membrane. The terms rG are elements of matrix [ R ]  . 
To incorporate the nonideality in the original 
expressions of Kedem and Katchalsky3 as expressed 
by the terms rb,  the following equations can be writ- 
ten for the entropy dissipation function @: 

Here, N w  and Ns are fluxes given by eq. (3) and ( po 
- hi) is the difference in chemical potential of the 
bounding solutions, which is given by 

- Pi = VAP + RT- [ l + r l  Ac (12) 
C 

Writing eq. (12) for water and solute, we obtain 
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Inversion of eq. (10) and substitution into eq. 

and 

Hence, 

i + r  

v w  7 
CW 

CP = ( V w N w  + V s N s ) p  

where matrix [ R ]  is the inverse of the friction coef- 

Thus, the ' phenomenological coefficients are 
identified as the matrix elements of [X%-'X], where 

RTAcs (15) ficient matrix. 

Here, Vi is the specific volume of component i .  A 
comparison between the Stefan-Maxwell relations 
of eq. (10) and the above formulation which incor- 
porates nonideality into the Kedem-Katchalsky 
framework3 can now be made using the definitions 
of volume flow, Jv ,  and exchange flow, JD. Indeed, 

the matrix [XI contains terms representing the sys- 
tem nonideality and matrix [RI-' is symmetric and 
a function of species interactions. Equation (20) re- 
lates experimentally measurable fluxes as defined 
by Kedem-Katchalsky to experimentally measur- 
able gradients due to differences in bounding solu- 
tions. The Onsager coefficients can be evaluated by 

and 

suitably arranging an experiment whereby flows are 
measured for prescribed driving forces. This is usu- 
ally achieved with either a zero concentration gra- 
dient and a fixed pressure differential or vice versa, 
since there are only two equations and three coef- 
ficients to be evaluated. 

J v =  V w N w +  VSNS (16) 

Equations (15)-( 17) imply that 

CP = J v A p  + JDRTAcs 

Therefore, 

TERNARY SYSTEMS 

For a' ternary formulation, the Gibbs-Duhem 
expression must be reexamined. This expression is 
written as (18) 

F w d  In aw + Cs d In as + Cd In ad = 0 (21) 

This can be rewritten as 
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- 
Cd 

d ln aw = -?d ln as - =- d In ud (22)  
C W  c w  

From eq. ( 4 )  it follows that 

and 

where 
Therefore, 

Using the Kirkwood formulation as in Lightfoot 
et al.5 for the force balance in terms of resistance 
coefficients rij, we obtain 

and 

Performing the integration across the differential 
thickness dx and using constant values for all the 
other quantities (since the process is at steady state, 
the values of Nj are constant), we obtain the matrix 
form 

The matrix [ R ]  is symmetric and is the resistance 
coefficient matrix. The Kedem-Katchalsky equations 
can be applied only if the total and exchange flows 
are defined correctly for the ternary system. The 
entropy dissipation function is 

Equation (25)  gives the driving chemical poten- 
tial as 

- p h  = V w A p  - 

and 
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After integration and averaging, we obtain 

or 

following relations are obtained 

X [ R:E] RTACs (38)  

Therefore, the Onsager coefficient matrix for this 
ternary system is 

Here, J v  is the total flow, and J D l  and JD2 are the 
two exchange flows. It must be noted here that the VS V W  V d  

nonideality of the system appears as a multiplying i + r s  - ( i + r s )  
factor ( 1  + I') in each flow. Thus, we are free from 
the Kedem-Katchalsky assumption of a dilute state 
which would have necessitated ideality and, there- 

would have been zero. This approach is similar to 
the binary formalism of Friedman and Meyer.' The 

L~ = - 
CW [ 7 - ( l - + r d )  (1 

fore, a value of I', defined in eqs. (4) and ( 6 ) ,  that CW 

1 + rs 

X [R]- '  (39) 

Comparison of this with the coefficient matrix of 
eq. (20)  in the binary system allows an extension 
to other systems. For example, the binary and quar- 
ternary systems have coefficient matrices LB and LQ 
given by 

CW 

(1 + rs) 
(37) 

X [.I-'[ ( 1  + rs) ] (40) 
Substituting for the fluxes from eq. (29)  in eq. (37),  
we obtain 
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uv = - 
RTcs 

X [ R " ] "  

J v =  0 

The major development of Kedem and 
Katchalsky3 was to specify relations between ex- 
perimentally measured fluxes and pressure or con- 
centration gradients for a system of a single solute. 
The coefficients in these relations are the mem- 
brane-related parameters, though they are also 
functions of solute properties. Consider the equa- 
tions 

and 

Here, Jv is the volume flux, and N s ,  the solute flux. 
The coefficients are functions of the hydraulic con- 
ductivity Lp,  the phenomenological permeability w p ,  
and the reflection coefficients uv and us for flow vol- 
ume and solute, respectively. Equations ( 42 ) and 
(43)  can be compared to eqs. (10) and (20)  to de- 
termine if the coefficients calculated from membrane 
diffusion experiments are really functions of the 
elements of the matrix [ R ]  . However, eq. (20)  rep- 
resents conjugated fluxes and forces, whereas eqs. 
(42)  and (43)  do not. 

It is clear that three coefficients are needed to 
determine the system for the case of a single solute 
with water and membrane as the other components. 
In the Kedem-Katchalsky framework, these are Lp, 

v d 2  0 

wp, and uv or us. For a system with more components, 
the number of coefficients will increase. The two 
reflection coefficients are experimentally defined by 

(44) 

(45) 

where the experiment is chosen so that concentra- 
tion differences are zero for us and there is no net 
flow for uv. 

Equations (20) and (38) must be viewed in the 
light of their ability to specify the membrane. Ex- 
perimentally, a system for pressure and concentra- 
tion gradients can be set up using a diffusion cell 
and characterization of various membranes is pos- 
~ i b l e . ~  The experiments must be conducted with ex- 
treme care and there is a scarcity of reliable data 
where the effects of concentration polarization, 
among other adverse effects, are minimized. An ex- 
ample of such data was that of Kaufman and 
Leonard' where cellophane is characterized for only 
three solutes at two temperatures. 

From the coefficient matrices presented earlier, 
it is expected that the coefficients for a membrane 
in a binary system will be different from the coef- 
ficients for the same membrane in a ternary ~ y s t e m . ~  
This is due to the increased competition for pore 
openings and a blocking of these openings. The pre- 
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vious analysis provides a clear method of calculation 
of all the coefficients needed for the determination 
of the solvent and solute fluxes in membranes, 
starting from first principles. Knowledge of the non- 
ideal thermodynamic behavior of the system is 
enough to achieve this calculation. 

CONCLUSIONS 

The previous analysis presented a potentially useful 
framework of correlation of solute permeabilities 
with the multicomponent diffusivities in multicom- 
ponent systems of membrane transport. Knowledge 
of the nonideal behavior of such systems can lead 
to an accurate analysis of solute transport. Unfor- 
tunately, with the exception of very special cases,’ 
the various nonideal terms are not always available 
for the necessary calculations. 
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